Tangent Lines, Slope at a Point, Derivatives
1. Tangent Lines:  A tangent line to a curve is the straight line that most resembles the graph near that point.  By finding the slope of a tangent line, we can find the slope of the curve at the given point.

Examples of Tangent Lines

2.  Determining the slope of a curve at a given point:  To determine the slope of the function f at the point 
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, we have to find the slope of the line that connects the point 
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 to another point on the curve that is infinitely close to the point 
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.  This leads to two obvious questions

1. What point on the curve 
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is infinitely close to the point 
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2. How would we find the slope of the straight line connecting those two points?

The answers are as follows

1. assuming that the curve 
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 is continuous, then we can consider the point 
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to be infinitely close to the point 
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,so long as a is infinitely close to 
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.  This happens if h is infinitely small.
2. From Grade 9 math, we know that the formula for the slope between the points 
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3.  What is a Derivative?:  The derivative of the function f at the number a is the slope of the curve 
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. The symbol for the derivative of f at the number a is 
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.  Putting this together with the answers to our two questions above, we get
	The derivative of f at the number a is given by 
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This leads to the definition of the derivative function
	The derivative of f(x) with respect to x is the function 
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4.  Examples:  

a) Determine the derivative of 
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 by first finding the derivative function.
b) Determine the derivative 
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c) Determine an equation of the tangent line to the graph of 
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at the point where 
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d) Determine an equation of the line that is perpendicular to the tangent to the graph of 
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at the point where 
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, and that intersects it at the point of tangency.

5.  a)The Existence of Derivatives
A function f is said to be differentiable at a if 
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exists.  At points where f is not differentiable, we say that the derivative does not exist.  Three common ways for a derivative to fail to exist are shown (include diagram at the bottom of page 70)
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5b) A Relevant Example:   Using these concepts, let’s discuss why the absolute value function 
[image: image32.wmf]x

y

=

 is not differentiable at 
[image: image33.wmf]0

=

x

 .  We’ll do this first from a common-sense/graphing perspective, then secondly from an algebraic perspective.
	1.  Graphing/Common Sense Perspective


	2.  Algebraic Perspective


6. Other Notation for Derivatives

Other notations for the derivative of the function 
[image: image34.wmf])

(

x

f

y

=

 are 
[image: image35.wmf])

(

x

f

¢

, 
[image: image36.wmf]y

¢

, and 
[image: image37.wmf]dx

dy


7. More About Derivatives

Since the derivative 
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can be interpreted as the slope of the tangent at 
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can also be considered the instantaneous rate of change of 
[image: image41.wmf])

(

x

f

 with respect to x when 
[image: image42.wmf]a

x

=

.
_1327846580.unknown

_1327847650.unknown

_1327848183.unknown

_1327848689.unknown

_1327849312.unknown

_1327849435.unknown

_1327849517.unknown

_1327849547.unknown

_1327849396.unknown

_1327849259.unknown

_1327849279.unknown

_1327849232.unknown

_1327848392.unknown

_1327848661.unknown

_1327848237.unknown

_1327847915.unknown

_1327848077.unknown

_1327848155.unknown

_1327848053.unknown

_1327847693.unknown

_1327847891.unknown

_1327847688.unknown

_1327847008.unknown

_1327847110.unknown

_1327847278.unknown

_1327846825.unknown

_1327846739.unknown

_1327846491.unknown

_1327846538.unknown

_1327846564.unknown

_1327846571.unknown

_1327846555.unknown

_1327846513.unknown

_1327846529.unknown

_1327846502.unknown

_1327845563.unknown

