Chapter 2.5 – Derivatives of Composite Functions
The composite function 
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Example:  Suppose 
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a) Express 
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 -  note that this is like asking you to express 
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b) Evaluate 
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c) Express 
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 -  note that this is like asking you to express 
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d) Evaluate 
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Solutions

	Chain Rule:  If f and g are functions that have derivatives, then the composite function 
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 has a derivative given by 
[image: image12.wmf])

(

))

(

(

)

(

x

g

x

g

f

x

h

¢

¢

=

¢

.
Chain Rule in Leibniz Notation:  If y is a function of u and u is a function of x (so that y is a composite function), then 
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Note to Beland: Show d[3(4x^2-5x+1)^2]/d(4x^2-5x+1)=6(34x^2-5x+1)

Proof of Chain Rule:
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	We can only make this move if we know that 
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.  In other words, this proof is not valid over any domain of the function for which the graph of 
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	Look at the denominator of the first fraction.  We’re taking the limit of that fraction as 
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.  So, we’ll let 
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, we’re able to rewrite that last line as follows:
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More General Application of the Power of a Function Rule:  Back in section 2.3, the Product Rule section, we discussed a rule for the power of a function if the exponent n is an integer.  We can now generalize this statement to any real exponent n.  Specifically,

	If u is a function of x, and n is a real number, then 
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In function notation, if 
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Helpful Hint:  It is helpful when answering these questions to know what the “inner function” and the “outer function” are.  In other words, if we think in terms of 
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Examples:

1. Determine the inner and outer function of each of the function 
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.  Then, using the chain rule, differentiate the function.

Solution:
outer function:  
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inner function:  
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2. If 
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3. Cool Question:  Determine the derivative of 
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 using two different methods:
Method 1 → The product rule and the chain rule

Method 2 → The chain rule and the quotient rule
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