Chapter 4.2 – Critical Points, Local Maxima, and Local Minima

From Chapter 3.3, we learned that a minimum or maximum function value (i.e., an extreme value) might occur at a point 
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    Similarly, a minimum or maximum value might occur at a point 
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 is undefined.  
  We refer to the points of minimum or maximum values as critical points.  The x-values at these points are critical values.
	First Derivatives Test:

When moving left to right through x-values:

· if 
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 changes sign from negative to positive at 
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 has a local minimum at this point.

· if 
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· if 
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 does not change its sign at c, then 
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Example 1:  For the function 
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, determine all the critical numbers.  Then, determine whether each of these values of x give a local maximum, a local minimum, or neither.
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Example 2:  (A horizontal tangents that is not an extreme value).  Determine whether the function 
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Example 3:  (A cusp).  Determine the critical numbers of the function 
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  (like Example 3 on page 174)
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	Remember that a local minimum value does not have to be the smallest value in the entire domain, just the smallest value in its neighbourhood.  Similarly, a local maximum value does not have to the largest value in the domain, just the largest in its neighbourhood.


Example 4:  (Graphing the derivative given the graph of a polynomial function).  Given the graph of a polynomial function 
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  (much like example 4 on page 177)
	
	
	


	Algorithm for Finding Local Maximum and Minimum Values of a Function f
· find critical numbers of the function (that is, determine where 
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 is undefined) for all x-values of f in the domain.

· Use the first derivative to analyze whether f is increasing or decreasing on either side of each critical number.

· Based upon your findings at the second step, conclude whether each critical number locates a local maximum value of f, a local minimum value, or neither.


� There might also be a point of inflection, which will be discussed later.


� For example, possibly a cusp or corner.  Or, as we learned in Section 2.1, � EMBED Equation.3  ���could be undefined at a vertical tangent or at a point of discontinuity of the function, though this would not necessarily correspond to a maximum or minimum.
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