Chapter 6.8 – Linear Combinations and Spanning Sets
A set of two vectors forms a spanning set for R²  if every vector in R²  can be written as a linear combination of those two vectors.

Perhaps intuitively, we understand that the set of vectors 
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Example 1 from page 335:  Show that 
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 can be written as a linear combination of either set of vectors 
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Example 2 from page 336  Show that the set of vectors
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Example 3 from page 336  Show that the set of vectors 
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 is a spanning set for R².

Example 4 from page 337  Show that the vector 
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 can be written as a linear combination of 
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 and illustrate this geometrically.

	Rule about Spanning Sets (explanation on page 338)
1. Any pair of nonzero, noncollinear vectors will span 
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2. Any pair of nonzero, noncollinear vectors will span a plane in 
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Example 5 from page 339

a. Given the two vectors 
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, does the vector 
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 lie on the plane determined by 
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 and 
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?  Explain.
b. Does the vector 
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 lie in the plane determined by the first two vectors?
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