Section 7.4 – The Dot Product of Algebraic Vectors
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Similarly, if 
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 are both vectors in R³.  Then
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Proof of the Component Formula in R³                   

(proof on page 379-380)
Theorem:
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When two vectors are placed tail to tail, as shown, 
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 (draw diagram on page 381)
Example 2b from page 381

Calculate, to the nearest degree, the angle between 
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Example 3 from page 382
a. For what values of k are the vectors 
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b. For what values of m are the vectors 
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Example 4 from page 383
A parallelogram has its sides determined by 
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.  Determine the angle between the diagonals of the parallelogram formed by these vectors.
Example 5 from page 384
Find a vector (or vectors) perpendicular to each of the vectors 
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