Section 9.5 – The Distance from a Point to a Line in 
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Consider the distance from a Point 
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 (There are typos in section 9.5, primarily on page 535)
	The shortest distance from a point to a line is the perpendicular distance.  Therefore, we are looking for the distance from 
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that is also on the line, and draw the vector from 
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The distance from 
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	Draw in three gradual diagrams using the one on p. 534
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using SOHCAHTOA, we know that        
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substituting this in to the asterisked (*) equation above, we get
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(* in the work on the left, please make sure that each B is a coefficient of y, not x)
From this line, recognize that since 
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is on the line 
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Since the denominator is positive, and since the distance from the point to the line must be positive, we express the numerator as an absolute value.  Therefore
	The distance, d, from a point P0(x0, y0) to the line with equation Ax + By + C = 0 is
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Example:  Determine the distance from the point 
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Solution:
Example:  Determine the distance from the point 
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Solution:
Example:  Calculate distance between the two parallel lines 
[image: image33.wmf]0

14

7

3

=

+

-

y

x

 and 
[image: image34.wmf]0

15

14

6

=

+

-

y

x

.

Solution:
Determining the distance between a point and a line in 
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Suppose that we wish to know the distance between the point P and the line 
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The shortest distance from the point to the line is the perpendicular distance from P to R.  Label this distance d.  We do not know the coordinates of the point R.  However, we can choose any two other known points on the line 
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Using SOHCAHTOA, we see that       
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	Recall from section 7.7 that  
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Example:  a)
Determine the distance from the point 
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	Solution:  (an alternative dot product method is on page 539)
	


b) Determine the coordinates of the point on the line in part A which represent the shortest distance to the point P(1,4,-6)
answer: 
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c) Suppose the point P(1,4,-6) is reflected through the line given in part a).  What are the coordinates of the image point 
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