Section 6.6 and 6.7 – Operations with Algebraic Vectors in R² and R³ 

Vectors in R²:  Any vector in the two-dimensional plane can be expressed as a linear combination of the unit vectors 
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By convention, these vectors are generally referred to as 
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 and 
[image: image5.wmf]j

 respectively.  Since they are unit vectors (i.e., since they each have a magnitude of 1) they are sometimes given little hats.  In other words, they are sometimes denoted 
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 and 
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.  Therefore, you might see the vectors written as 
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Going back to our earlier example, we can alternatively write
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Vectors in R³:  There are similarities between R² and R³ when working algebraically.  For instance, by convention we generally let
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or, since they’re unit vectors and are therefore entitled to little hats, we can alternatively write
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So, if we’re dealing with three dimensional vectors
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       or, alternatively we can write
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      or, alternatively we can write
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	From the above, we can see that in 2 dimensions, if 
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.  Similarly, in 3 dimensions, if 
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Example 2 from page 322:  Given 
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, determine the components of 
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.  Then, graph all four vectors on the graph provided.
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	


Now, imagine a vector that begins at the origin, travels to the tip of 
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 and then travels in the opposite direction of 
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.  That would be equivalent to the vector 
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, which is equivalent to the vector 
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 (i.e., the vector which starts at point B and travels to point A).  In considering the vector 
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 formed by joining the points 
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	In considering the vector 
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 formed by joining the points 
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Similarly, in three dimensions

	The vector 
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 formed by joining the points 
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Example 3 from page 323:  
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 are three points in R². 
a) Calculate the perimeter of the triangle ABC.  In other words, calculate the value of 
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b) Calculate the value of 
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 and compare to the value of 
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 that you found above.
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